Unified Mathematics of Geometry and Music Robert E. Grant RG@strath speycrown.com Strathspey Crown, LLC. 4040 MacArthur Blvd Suite 310, Newport Beach, CA, 92660 ## **ABSTRACT** Unified mathematical models must establish numerical connections between all types of physical phenomenon. Inherent relationships between geometry and music are shown through the inscription of regular polygons within a unit circle. ## **SUMMARY** Hertz is the standard measurement of frequency in sound, calculated by the number of times a sound's waveform or vibration pattern repeats in a single second. Although the modern tuning standard for the note A is 440hz, "true" Pythagorean tuning originally set the note A to 432hz. To see the direct connections between geometry and sound, Pythagoras' original chromatic tuning scale must be used. Notes will repeat with a uniform ratio called "octaves," calculated by doubling or halving any hertz value. There are a total of 12 notes, so the 13th note in a scale will be a repeat or up-octave of the first. For example, A4 = 216hz, A5= 432hz, and A6 = 864hz, where each number following the letter denotes the octave range the frequency belongs to. The note C4 is commonly referred to as "middle C" due to the range best fitted for human hearing. Pythagoras first discovered this pattern by noticing that plucking a string sustained a vibration or note and that plucking a string half as long sustains the same note at a higher pitch (See Figure 1). He used the same division to identify the frequencies of all other notes on the scale. Today, these ratios have been further honed and "equally tempered" to a greater degree of accuracy, meaning the frequencies shown are more symbolic references to the notes themselves. Figures 2-10 demonstrate how these values can be plotted around a circle, connecting the musical scale to arc lengths, interior angles, sums of angles, and natural progressions of regular polygons. ## RESULTS Each note in the scale has 2 corresponding degree references within one unit circle (circumference = 360), as the unit circle encompasses 2 octaves. Whole and half steps are smaller distances used in music theory to describe the gaps between notes within the same octave. For example, the half step gap from A5 (432hz) to A#5 (450hz) would be 30° on the unit circle, symbolizing an angle as the most elementary geometrical unit. The 360° unit circle is fundamental to our understanding of geometry and sound as each progressive note will correspond to a respective polygon (Fig. 2-8). "Gap notes" are empty spaces where there is no sharp or flat since the distance between the two whole notes (B-C and E-F) is only a half step, explained by the lack of intersection points when inscribing regular polygons within the unit circle. There are exceptions to this rule in deeper levels of music theory. The seminal note of the Flower of Life (F#: 720hz) lands perfectly on the circle at 186.32 degrees, referencing light speed (186.28 x 10^3 miles per second) +/- .00001. The following table will show the harmonic relationships between notes in the chromatic scale, their degree references, and their resulting polygonal geometries. For example, a B5 note following an A5 is 1.0833 x 432hz = 468hz, which lands at 300° (0.8333 of 360°) on a circle. The arc length is calculated by measuring the distance around the circle from the starting point (note A5 – B5 or 360°-300°). Therefore, the B5 (468hz) creates an equilateral triangle (see Figure 4). All further progressions of regular polygonal geometry follow with perfect symmetry (See Figure 2). For example, the note C produces an inscribed square since the arc length of 90° is 1/4th of the 360° unit circle. The note C# produces an inscribed hexagon since the arc length of 60° is 1/6th of the unit circle, meaning there would be a total of 6 equal sides to the polygon. The pattern continues through the audible spectrum of sound and is calculated for one full octave scale in the table below. Table 2 collects scale positions, degree references, decimal references, and doubling hertz frequency values for all 12 notes. | Arc Length | Degrees | Decimal
(°/360) | NOTE | Length
(unit) | Sum of
Angles | HERTZ | Decimal
(hz/432) | GEOMETRY | |----------------|---------|--------------------|-------------------------|------------------|-----------------------|--------------------------|---------------------|-----------| | 0 ° | 360° | 1.00 | A_5 | 12 | 0 ° | 432hz | 1.00 | | | 30° | 330° | .9166 | A # ₅ | 11/12 | 30° | 450 hz | 1.0416 | 2 | | 60° | 300° | .8333 | B_5 | 10/12 | 180° | 468hz | 1.0833 | 3 | | 90° | 270° | .7500 | C ₅ | 9/12 | 360° GAP: 540° | 504 hz | 1.1666 | 4 | | 60° | 240° | .6666 | C # ₅ | 8/12 | 720° | 540 hz | 1.2500 | 6 | | 45° | 225° | .5833 | D_5 | 7/12 | 1080° | 576 hz | 1.3333 | 8 | | 30° | 210° | .5620 | D # ₅ | 6.75/12 | 1800° | 612hz | 1.4166 | (12) | | 15° | 195° | .5406 | E ₅ | 6.48/12 | 3960° | 648hz | 1.5000 | 24 | | 7.5° | 187.5° | .5208 | F ₅ | 6.24/12 | 8280° | 684 hz | 1.5833 | 48 | | 6.32° | 186.32° | .5175 | F# ₅ | 6.18/12 | 9900° | 720 hz | 1.6666 | 57 | | 4.76° | 184.76° | .5104 | G_5 | 6.124/12 | 13140° | 756 hz | 1.7500 | 75-sides | | 2.4° | 182.4° | .5052 | G # ₅ | 6.0624/12 | 26640° | 792 _{hz} | 1.8333 | 150-sides | | 1.2° | 181.2° | .5033 | GAP II | 6.0399/12 | 53640° | 828 hz | 1.9166 | 300-sides | | NEXT
OCTAVE | 180° | .50 | A_6 | 6/12 | 0 | 864 _{hz} | 2.00 | 1 | Table 1 | THE CHRO | MAT | IC S | CALE | (12 | NOT | ES/C | OCTA | VE) | | | | | | | | | |-------------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------| | Polygon (Geometry) | PENTA | Square | PENTA | Hexagon | 8-gon | 12-gon | 24-gon | 48-gon | 57-gon | 75-gon | 150-gon | 300-gon | CIRCLE | LINE | ANGLE | Triangle | | Position in A Scale | | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 10 | | 11 | 12 | | Position in C Scale | | 4 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 1 | | 2 | 3 | | Arc Length | 72 | 90 | 72 | 60 | 45 | 30 | 15 | 7.5 | 6.3157 | 4.8 | 2.4 | 1.2 | 0 | 18 | 30 | 60 | | Arc Position | 288 | 270 | 252 | 240 | 225 | 210 | 195 | 187.5 | 186.32 | 184.8 | 182.4 | 181.2 | 180 | 162 | 150 | 120 | | Decimal Reference (360) | 0.8000 | 0.7500 | 0.7000 | 0.6667 | 0.6250 | 0.5833 | 0.5417 | 0.5208 | 0.5175 | 0.5133 | 0.5067 | 0.5033 | 0.5000 | 0.4500 | 0.4167 | 0.3333 | | Decimal Reference (432) | 1.1250 | 1.1666 | 1.2083 | 1.2500 | 1.3330 | 1.4166 | 1.5000 | 1.5833 | 1.6660 | 1.7500 | 1.8333 | 1.9166 | 2.0000 | 1.0208 | 1.0417 | 1.0833 | | Hertz Frequency | 486 | 504 | 522 | 540 | 576 | 612 | 648 | 684 | 720 | 756 | 792 | 828 | 864 | 882 | 900 | 936 | NOTE | GAP C | С | GAP C | C# | D | D# | E | F | F# | G | G# | GAP A | Α | GAP A | A# | В | | Octave -1 | / | | | | 9 | | | | | | | | | | | | | Octave 0 | | | | | 18 | | | | | | | | 27 | | | | | Octave 1 | | | | | 36 | | | | | | | | | | | | | Octave 2 | | 8930 | | | | | | | 45 | J. | | | 54 | | | | | Octave 3 | - 1 | 63 | | | 72 | | | | 90 | | 99 | | 108 | | | 117 | | Octave 4 | | 126 | | 135 | | 153 | 162 | 171 | 180 | 189 | 198 | 207 | 216 | | 225 | 234 | | Octave 5 | 243 | 252 | 261 | 270 | | 306 | 324 | 342 | 360 | 378 | 396 | 414 | 432 | 441 | 450 | 468 | | Octave 6 | 486 | 504 | 522 | 540 | - | 612 | 648 | 684 | 720 | 756 | 792 | 828 | 864 | 882 | 900 | 936 | | Octave 7 | 972 | 1008 | 1044 | 1080 | 1152 | 1224 | 1296 | 1368 | 1440 | 1512 | 1584 | 1656 | 1728 | 1764 | 1800 | 1872 | | Octave 8 | 1944 | 2016 | 2088 | 2160 | | 2448 | 2592 | 2736 | 2880 | 3024 | 3168 | 3312 | 3456 | 3528 | 3600 | 3744 | | Octave 9 | 3888 | 4032 | 4176 | 4320 | 4608 | 4896 | 5184 | 5472 | 5760 | 6048 | 6336 | 6624 | 6912 | 7056 | 7200 | 7488 | | Octave 10 | 7776 | 8064 | 8352 | 8640 | 9216 | 9792 | 10368 | 10944 | 11520 | 12096 | 12672 | 13248 | 13824 | 14112 | 14400 | | | Octave 11 | 15552 | 16128 | 16704 | 17280 | 18432 | 19584 | 20736 | 21888 | 23040 | 24192 | 25344 | 26496 | 27648 | 28224 | 28800 | 29952 | | Octave 12 | 31104 | 32256 | 33408 | 34560 | 36864 | 39168 | 41472 | 43776 | 46080 | 48384 | 50688 | 52992 | 55296 | 56448 | 57600 | 59904 | | PERFECT THIRD | | E | | F | F# | G | G# | A | A# | В | С | | C# | | D | D# | | PERFECT FIFTH | | G | | G# | Α | A# | В | С | C# | D | D# | | E | | F | F# | Two whole octaves depicted; moving up the note scale requires progressively smaller distances like guitar frets Figure 1 Notes F, F#, G, and G# correlate to polygons that are not depicted above as they closely resemble circles (48, 57, 75, and 150-sided polygons) Moving a "half-step" from A – A# depicts a 30° angle, a shape commonly used as a symbol for the compass Moving a "whole-step" from A – B depicts a 60° angle, which, when closed out, forms the fundamental equilateral triangle geometry Figure 4 Figure 5 Pentagons relate to "dissonant" or enharmonic notes (like B#), which are not used in the classical chromatic scale of music Figure 6 Figure 7 Figure 8 Figure 9 Figure 10